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Abstract. Active Learning is an active area of research in the Machine Learn-
ing and Data Mining communities. In parallel, needs for efficient active learning
methods are raised in real-world applications. As an illustration, we present in
this paper an active learning challenge applied to a real-world application named
Nomao. Nomao is a search engine of places. It aggregates information coming
from multiple sources on the web to propose complete information related to a
place. In this context, active learning is used to efficiently detect data that refer
to a same place. The process is called data deduplication. Since it is a real-world
application, some additional constraints have to be handled. The main ones are
scalability of the proposed method, representativeness of the training dataset, and
practicability of the labeling process.

1 Brief introduction to active learning

Active learning methods come from a parallel between active educational methods and
learning theory [1]. The learner is from now a statistical model instead of a student. The
interactions between the student and the teacher correspond to the opportunity for the
model to interact with a human expert. The examples are situations used by the model
to generate knowledge on the problem. Active learning methods allow the model to
interact with its environment by selecting the more “informative” situations.

This paper restricts the active learning domain to the machine learning paradigm?.
The purpose is to train a model which uses as few examples as possible. The elaboration
of the training set is done in interaction with a human expert to maximize the progress
of the model. The model must be able to detect the more informative examples for its
learning and to ask to the expert: “what should be done in these situations ?.

Two scenarios are possible if one considers the raw data or the data descriptors.
These two scenarios are adaptive sampling [3] and selective sampling [4]. The Nomao
problem described in the next section commands to use the selective sampling where
the model observes only a restricted part of the universe materialized by training ex-
amples stripped of label. Consequently, the input vectors selected by the model always
correspond to a raw data. The image of a “bag” of instances for which the model can
ask labels is usually used.

3 The reader may find a more comprehensible survey on active learning in [2].



2 Nomao - problem description

Nomao* is a search engine of places that ranks results according to what you like and
what your social network members like. Its development raises many scientific issues:
extraction and structuralization of local content, query understanding and information
retrieval, results ranking, personalization and recommendations [5].

During its first step of content extraction, Nomao collects data coming from mul-
tiple sources from the web and needs to aggregate them properly. First task consists
in detecting what data refer to the same place. To automate this deduplication process
and avoid hand-coded functions to resolve the various data inconsistencies, a Machine
Learning method is used. Being given a set of pairs of records labeled as referring to the
same place or not, a predictive model is built that is then able to decide if two records
should be merged or not.

One key challenge is then to find a relevant set of training examples to be provided to
the classifier. We reach here the domain of Active Learning [6]. Since it is conducted on
real data, some specific issues are raised. The main ones are scalability of the proposed
active learning method, representativeness of the training dataset, and practicability of
the labeling process.

2.1 Real-world issues

Nomao dataset contains millions of examples. First of all, the proposed method must
be able to handle such high volumes of data. It must also be able to perform a learning
phase on training data using only a small part of the entire distribution. Indeed, the
sampling of the dataset may not be uniform since it could perhaps not cover the entire
domain space.
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Fig. 1. Learning when test and train inputs can have different distributions

This is illustrated in Figure 1. An initial training dataset (ID) of 29,104 examples,
illustrated by the red circle (on the left), had been built by hand by an expert of Nomao,

“http://www.nomao.com/



following his feelings. Then 1,985 examples have been drawn randomly and labeled
in order to create a test dataset (TD). Besides, 100,000 examples have been randomly
selected to create an Unlabeled Dataset (UD). The entire distribution (containing all
data) could thus be the blue circle (global), UD the green one (middle), and TD the
grey one (right), that could be disjointed from the red one of ID. So the results obtained
on the initial training dataset could differ from the one obtained on the test dataset.

There are a lot of methods or statistical tests to examine if test, train and unlabeled
inputs have different distributions. One simple way is to train a classifier where the train
inputs belong to a (imaginary) positive class and the test examples to a (imaginary) neg-
ative class. If the classifier is robust and able to separate the two distributions then the
degree of performances of this classifier is a good indication. In the real-world problem
presented in this paper, the distributions are somewhat different: see Section 2.3 below.

The other important issue carried by this real-world application is the practicability
of the labeling process. Indeed, with such high volumes of data, following the classical
way of running active learning (labeling examples one by one and updating the model at
each step) is unpractical. It is too long and too time-consuming for the labeling expert.
So sets of examples must be proposed for labeling rather than individual examples. That
is known as the problem of purchasing data labels by batches, and it has been shown in
[7] that in that case, the number of examples labeled at each iteration of a procedure of
active learning influences the quality of the involved model.

At last, one feature of interest of the Nomao challenge is that it involves a real
human labeling of data from samples selected by the competitors, contrary to other
challenges where the labeling phases have been simulated. We will see in the analysis
of the results on Section 4.3 that this will help us understand what is behind the different
active phases performed.

2.2 Data format

Available Nomao raw material is spots (places) descriptions. A spot is defined by the
following main features: name, address, geolocalization (GPS), website, phone, fax,
etc. (but data may be wrong or missing). Consider for instance the (partial) spot raw
material provided in table 1.

ID Name Phone Address GPS

1 La poste 3631 13 Rue De La Clef 59000 Lille France|(50.64, 3.04)
2 La poste 0320313131] 13 Rue Nationale 59000 Lille France |(50.63, 3.05)
3 |La poste nationale 3631 13 r. nationale 59000 lille (50.63, 3.05)

Table 1. Nomao spot partial description.

For data deduplication, we define an example as a comparison between two spots.
Comparison techniques depend on the data type. For the geolocalization points, a geo-
graphical distance is used. For other values, the following string comparison functions
are used: levenshtein, trigram, difference, inclusion, equality. Further details related to



string comparison functions like levenshtein or g-gram can be found in [8]. And all
details about this data can be found on the challenge website http://www.nomao.
com/labs/challenge.

As a consequence, a single example is defined by 118 comparison features. Its name
is composed of the names of the spots that are compared, separated by a sharp (#), as
shown in first column of table 2. In addition, a specific label is added corresponding to
the final decision of data deduplication. A label value is +1 if the concerned spots must
be merged, and -1 if they do not refer to the same place.

Considering examples described in table 1, the corresponding (partial) examples for
data deduplication are provided on table 2. We assume there that an expert has qualified
spots 1 and 2 as being distinct, as well as spots 1 and 3 (label -1), but spots 2 and 3 as
being the same (label +1).

ID1#ID2 |trigram(Name) (levenshtein(Phone) |levenshtein(Address) |distance(GPS)|label
1#2 1 0.3 0.78 0.99 -1
1#3 0.47 1 0.52 0.99 -1
2#3 0.47 0.3 0.74 1 +1

Table 2. Data deduplication examples.

2.3 Data distribution

In standard supervised learning, it is commonly assumed that the samples used for
training follows the same probability distribution as the test samples. However, this as-
sumption is not always satisfied in practice [9]. Dataset shift is present in most practical
applications, for reasons ranging from the bias introduced by experimental design to
the irreproducibility of the testing conditions at training time. The three main topics
covered by this domain are (i) domain adaptation / transfer learning; (ii) covariate shift
adaptation and (iii) multi-task learning.

A very simple way to analyze the difference between two distributions is to use a
robust’ classifier. The examples of both distributions are described by the same explana-
tory variables. A target variable is added on each distribution where its value is *+1’ for
the first distribution and ’-1’ for the second distribution. If the classifier is able to sepa-
rate the two distributions, then its performance is an indication on the distance between
the two distributions, and the variable importance provides this indication explanatory
variable per explanatory variable.

This experiment has been conducted using the MODL approach which is a model
selection method for classification and regression, that have no last recourse to cross-
validation, yet performed well in recent benchmarks. Such methods have been recently
extended to the less studied problem of rank regression. The methods used are Bayesian
in spirit, but make use of original data-dependent priors [10].

> robust in the sense that it has strong regularization term.



Table 3 gives the 5 variables which are the more different between the train/test
datasets and train/unlabeled datasets used in this challenge. An averaging of selective
naive Bayes classifiers [11] obtains an Area Under the ROC curve (AUC) of 0.954
and 0.996 respectively when trained to discriminate the train/test distributions and the
train/unlabeled distributions. These values, from our experience, indicate a strong dif-
ference between the various distributions. So an active strategy using a semi-supervised
approach should be very interesting to be tested.

Train / Test Train / Unlabeled
Varl phone_diff street_number_diff
Var2| phone_levenshtein |street_number_levenshtein
Var3 phone_trigram street_number_trigram
Var4|street_number_trigram| street_number_equality
Var5| geocode_coordinates phone_levenshtein

Table 3. The 5 more important variables (sorted in descending order of relevance) to discriminate
the distributions.

3 Initial in-house experiments

We report here the initial results of various active learning approaches that have been
tested on Nomao data. They are all based on the use of boosting machine learning algo-
rithm [12], and the selection of examples closest to the margin returned by the defined
weak learners. Thus the active learning methods focus on examples that maximize the
uncertainty about their label [13].

The first boosting algorithm that has been used is the classical boosting of stumps
[14]. Then three methods for selecting examples have been considered:

1. one exploring the examples space, by selecting examples at random:;

2. one exploiting fully the information coming from the boosting algorithm by select-
ing the examples closest to the margin;

3. and a last one mixing this exploitation of boosting with a bit of exploration of the
examples space by using a random selection, weighted by the inverse distance to
the margin: this approach will be called wmargin.

Hence, the process to get new examples to be labeled has the following steps:

. learn on training data using the boosting of stumps with 100 trials (boosting steps);

. use the model learnt to predict on unlabeled data (UD);

. for the margin approach: select the examples closest to the margin;

. for the wmargin approach: pick randomly the examples with their probability of
being selected proportional to their associated distance to the margin.

AW N =



As explained before, an initial (training) dataset had first been formed by hand that
contained 29,104 examples. This dataset was cut randomly into 2 parts, in order to sim-
ulate the random selection®. Then we got our 2 datasets created using active learning.
So finally we got the following 4 datasets:

init is the main one that contains 28,130 examples;

rand is the next one that picked randomly 974 examples;

marg contains 917 examples closest to the boosting margin;

wmarg contains 964 examples selected at random weighted by the distance to the
margin.

Ll e

3.1 Boosting stumps

Figure 2 shows how the testing phase is organized to evaluate the interest of those active
datasets.

Fig. 2. Testing the interest of active datasets (e.g. 1015 examples of dataset init are misclassified
by model MR).

Each dataset is cut into 10 parts to perform Cross Validation. For each test, 10
runs are thus performed, 9/10th of the data being used for training (A) and 1/10th for
testing (E). Thus, in figure 2, IA corresponds to a training subset of the init dataset, IE
to a test subset of init, ME a test subset of the marg dataset, and so on. Each active
dataset (rand, marg or wmarg) is then associated to the initial one (inif) in order to
learn a model (called MR, MM or MW) using the boosting of stumps with 100 trials.
A reference model MI based only on the initial dataset has also been computed. As
a result, predictions are computed on all test datasets (IE, RE, ME and WE). Table 4
shows the results that have been obtained by that process.

® This way of selecting random examples will be improved in the next set of experiments de-
scribed in the next section.



train test init (28,130)|rand (974)|marg (917)|wmarg (964)| error
initial only (reference) 1006 30 505 432 6.37%
+ random (explore) 1015 29 515 438 6.44%

+ margin (exploit) 1043 33 243 234 5.01%

+ wmargin (compromise) 1062 32 248 230 5.07%

Table 4. Number of misclassified examples with boosting of stumps, depending on the active
learning method used to enrich the initial dataset for training.

We can thus observe that using active learning significantly improves the accuracy
of the predictions, since the error rate decreases from more than 6% to roughly 5%.

The improvements are more significant on the examples that are supposed to be
more difficult to predict, since we roughly divide by 2 the number of misclassified
examples on the marg and wmarg datasets.

We can also note that all active approaches degrade the results on the initial dataset,
and the approaches based on boosting even more. This means that adding to the training
dataset too many difficult examples can affect the overall accuracy of the model.

These results are very interesting, even if we were surprised by the fact that picking
random examples could decrease performance. Indeed, in these experiments, random is
worse than initial, and wmargin worse than margin. This behavior indicates that the ran-
dom strategy has (by chance) discovered a new “pattern” in the data which temporarily
degrades the performances.

3.2 Boosting trees

Considering last results, we decided to carry out new tests with another boosting ap-
proach, based on the use of decision trees C5 [15] rather than stumps. Table 5 shows
the results we got on the same datasets with this new algorithm, also run with 100 trials.
The reader could also find a relevant reference in [16] for a tree-model strategy.

i test init (28,130)|rand (974)|marg (917)|wmarg (964)| error

initial only (reference) 466 10 251 266 3.20%
+ random (explore) 444 9 248 253 3.08%

+ margin (exploit) 496 11 101 129 2.38%

+ wmargin (compromise) 475 8 112 96 2.23%

Table 5. Number of examples misclassified by C5, depending on the active learning method used
to enrich the initial dataset for training.

First of all we check here that the boosting of trees has better results than the boost-
ing of stumps on Nomao data. Then we can observe that using active learning still
significantly improves the accuracy of the predictions. But now the approaches based
on the exploration of the examples space show improvements on the results. Indeed, the



number of misclassified examples is now lower with the random approach than with the
initial one, and the wmargin has lower error than the margin one. The improvements
are still more important on the examples selected closest to the margin.

Also, the best results are now obtained using the wmargin method. These results are
more compliant to what is expected in active learning. Indeed, providing a compromise
between exploration and exploitation has been shown to be important in active learning
[17]. That way, the model is refined near to the decision boundaries, improving results
on tricky examples, but the rest of the examples space is also explored in order to stay
efficient on the rest of the dataset.

So the tests have been deepened in that direction: one new dataset has been gener-
ated: wmarg5 contains 995 examples selected using the random selection weighted by
the inverse distance to the margin provided by C5. We have also created a new random
dataset in order to observe its effect on the error rate obtained on the initial dataset. That
one contains 986 examples. So we will now use that one instead of the previous simu-
lated one. Table 6 shows the results we got on those new datasets, using C5 algorithm
again.

- 18Ul nit (29,104)|rand (986)|marg (917)|wmarg (964)| wmarg5 (995)| error
initial only | 474 119 247 267 499 [487%
T+ random | 470 30 21 224 a5 [422%
Y margin | 494 49 99 129 403 [3.56%
+ wmargin 493 37 103 106 372 3.37%
+ wmargin5 513 36 159 145 198 3.19%

Table 6. Number of examples misclassified by C5, depending on the active datasets used.

The reverse tests can also be conducted. Table 7 shows the results we got with C5
when using all data (full), or using all except those of one active dataset. In that case,
the highest the error rate of an approach compared to the full one, the most useful the
corresponding dataset is to the learning algorithm.

train test init (29,104)|rand (986)|marg (917)|wmarg (964)|wmarg5 (995)| error
Sull 548 24 63 63 143 2.55%

no random 571 29 61 73 160 2.71%
no margin 540 26 85 74 160 2.68%
no wmargin 546 23 72 85 170 2.72%
no wmargin5 529 27 61 68 218 2.74%

Table 7. Number of examples misclassified by C5, depending on the active datasets NOT used.

These results are still more compliant to what we can expect from an active learning
method. Each active dataset helps handling better its own kind of data, since margin is



the best approach to handle the marg dataset, wmargin the best for the wmarg dataset,
and so on. Also, the random dataset now helps improving results on all data, including
the initial one. At last, the overall performance of the system has increased significantly
since we decreased its error rate to 2.55% using all data.

3.3 Discussion

This preliminary study has shown the difficulty of designing efficient active learning
approaches in real-world applications.

We have shown that finding a good compromise between exploitation of information
coming from the model used, and exploration of the examples space is not trivial. In
particular, we have shown that a special care must be taken on finding active datasets
that do not degrade the results of the model on the initial training data.

These results indicate also that the performances could be improved using better
active learning methods or more adapted learning machines.

4 Nomao challenge

To deepen that research of performing Active Learning in Real-world Applications,
a challenge has been organized, from Friday, June 1, to Friday, June 15, 2012 (see
http://www.nomao.com/labs/challenge).

This section describes at first the protocol that has been set up for the challenge. We
then present the baseline method used to assess the results of the participants. Finally,
the last part of the section presents and discusses the results obtained.

4.1 Challenge protocol

999 new examples randomly selected were labeled by the Nomao expert in order to
increase the size of the test dataset (TD) to 1,985 examples. The initial training dataset
(ID) was still composed of 29,104 examples, and the unlabeled dataset (UD) of 100,000.
The target variable was only provided to the participants for the training dataset.

During the First Active Campaign, participants could train a classifier using the
training dataset (and the other datasets if they wanted to use semi-supervised method),
and they returned us the predicted labels for the test dataset. These predicted labels
allow us to measure the improvement obtained through active learning method. They
also asked for N (set to 100) example labels belonging to the unlabeled dataset.

During the Second Active Campaign, they could train their classifier using the train-
ing dataset (and the other datasets if they wanted to use semi-supervised method), in
addition to the N examples for which they asked the label. Then they returned us the
predicted labels for the test dataset, while asking, again, for N (100) example labels
belonging to the unlabeled dataset.

During the Final Test Campaign, they could train their classifier using the training
dataset (and the other datasets if they wanted to use semi-supervised method), plus the
2 x N examples for which they asked the label, and they returned us the predicted labels
for the test dataset.



To obtain the final results we initially decided to rank the participants according to
the improvement of the AUC. The goal was to have the best improvement thanks to
active learning AND to beat the baseline model. But the participation of the challenge
has been very low. Twelve competitors registered to download and analyze the data
before the beginning of the first active campaign, but only two competitors entered in
the first active campaign, and only one competitor achieved the complete process of the
challenge.

Why did we observe this behavior? When writing this paper we do not have the
answer, but we are investigating the reasons: problem too difficult, not enough advertiz-
ing, real-world issues? The ALRA workshop (http://www.nomao.com/labs/
alra), to be held at the ECML-PKDD 2012 conference, will be the opportunity to
discuss with the community about this point.

So at the end, the results have been analyzed in the light of the baseline model
(revealed at the end of the challenge) and the last in-house experiment.

4.2 Baseline method

Planning the purchase of new examples (per batches) is a compromise between different
steps which can be (i) a pre-selection [18]; (ii) a diversification [19]; (iii) the purchase
of N labels; and (iv) the iteration evaluation [20]. These steps include the dilemma
between exploration [21] and exploitation [22]. When the data are not purchased by
batches the reader may find in [23] a relevant reference for a random selection baseline
in applications.

The baseline method used to assess the performances of the competitors is based
on the use of a single classifier, naive Bayes, and a simple active learning strategy. This
baseline method is very straightforward and could easily be applied in the case where
the labels have to be bought by batches.

The naive Bayes classifier comes from the software Khiops’. This is a naive Bayes
classifier where each variable is weighted. The building phase of the weights of the vari-
ables is fully described in [11]. It includes two key steps: a step of variable selection
(Section 3.5) and an averaging step (Section 6.2). The variable selection step allows the
classifier to avoid unnecessary variables or explanatory variables unrelated to the classi-
fication problem. The averaging step allows weighting the variables. This classifier is a
baseline classifier in the sense that it provides only one separation. More sophisticated
classifiers, which incorporate several classifiers or linear separation, are known to be
better than this baseline classifier to elaborate an active learning strategy [24].

The baseline active learning strategy used tries to combine exploration and exploita-
tion. After training the naive Bayes classifier on the training data, the unlabeled dataset
(UD) was ordered using the predicted probability for the class "+1°. The instances (X)
to be labeled have then been chosen as described in figure 3 and correspond to a simple
compromise between exploration and exploitation.

7 http://www.khiops.com



A: the 10 examples having the lowest B: the 10 examples having the strongest
probability to belong to the class "+1" probability to belong to the class "+1"

| c 1 PC+1[X)
05 1

C:50 examples arround the boundary decision
(25 below and 25 above)

D: 15 examples uniformly distributed between A and C E: 15 examples uniformly distributed between C and B

Fig. 3. Position of the labels asked versus P(+1’

X).

4.3 Results and discussion

During the challenge, the Nomao team has used the method described in section 3.2
that is based on the boosting of trees (wmargin5). The method employed by the winner,
T. Sun, is described in [25]. Table 8 shows the AUC and error rate obtained by those 3
participants of the challenge on the test dataset (TD) and on their own active datasets
(called AD).

Method Baseline Nomao T. Sun
Active phase| 1 2 3 1 2 3 1 2 3
AUC on TD |0.9488(0.9786|0.9794(0.9807|0.9816|0.9821(0.9629(0.9631|0.9633
Error on TD|19.9%| 9.6% | 9.4% | 12% | 9% | 7.5% | 7.3% | 7.2% | 7.2%
Error on AD|37.8%(32.5%| 0 [32.5%| 45% 0 [24.4%| 8.5% [
Table 8. Results of participants on the test dataset (TD) and their own active datasets (AD).

T. Sun has clearly the best accuracy performances. In particular, he has shown very
good results since the beginning, since he already reached 7.3% error even before the
first active phase. But on the contrary, the other methods have shown high improve-
ments of their approaches when helped with new active examples. The baseline method
improved a lot with the first active phase (decreasing error from 19.9% to 9.6%), but
much less on the second phase (from 9.6% to 9.4%), when Nomao improved its results
more regularly (from 12% to 9% and then 7.5%).

All participants have selected difficult examples for the first active phase, since their
errors were high on the corresponding examples (between 24.4% and 37.8% error).
Then T. Sun selected examples on which he did much less error (8.5%), whereas Base-
line and Nomao methods continued with high errors on their active examples (between
32.5% and 45%).

To check the overall difficulty of the targeted active examples, one may check the
error of all methods on each dataset. Table 9 thus shows that the active data selected



by T. Sun and Nomao seem more difficult to predict than those chosen by the baseline
method.

Method Baseline|Nomao|T. Sun|Average
AD;(Baseline)| 8.5% |7.3% 8.6%
ADs(Baseline)| 86% [99% |
AD;(Nomao) | 37% 0 [24.7% 21.6%
AD>(Nomao) | 18.6% 0 7% )

AD1(T.Sun) | 29% |384% | 0 23.5%
AD3(T.Sun) | 16.7% | 9.5% 0 '

Table 9. Error rate obtained by every method when using their final version on the active datasets
(AD) of other participants.

The Nomao expert reported that many examples were indeed difficult to qualify.
Some of them were related to spots for whom the address was not precise (only the
name of the town was available for instance). Pairs of spots could also refer to distinct
shops in the same commercial centre, thus having the same address, and sometimes also
the same phone number. The same case could arise with doctor’s surgeries. Then post
offices could also be tricky examples because their names and phone numbers were the
same, so only the addresses were to make a difference.

Finally, table 10 shows the results of the 3 participants on all test datasets presented
in this paper. We validate here that T. Sun has the best overall performances, and observe
that even if Nomao outperformed the baseline method on the test set, Baseline had
finally better overall results, since he got lowest error rates on difficult datasets such as
marg, wmarg or wmarg5.

Method |Baseline|Nomao|T. Sun
test 94% | 1.5% |7.2%
marg | 22.9% | 24% [17.9%
wmarg | 21.3% |22.4% [16.5%
wmarg5| 33.1% | 45.8% |26.3%
total 19% | 22% | 15%
Table 10. Error obtained by every method when using their final version on all datasets.

5 Conclusion

The task that has been tackled during that challenge was especially difficult because the
initial dataset had first been formed by hand by the Nomao expert. The distribution of
the dataset was thus biased, so predicting labels on randomly selected examples (test
dataset) has not been trivial, and we have shown that this has been even more difficult



when faced with examples selected near to the decision boundaries of the classifiers
(active datasets). We face here a real-world situation.

Another aspect of the real-world anchor of this study concerns the initial process
for selecting examples to be labeled. Datasets marg, wmarg, wmarg5 and rand have
been created sequentially, in order to develop the Nomao deduplication system as fast
as possible. On the other side, datasets baseline, nomao and tsun have been generated
in parallel, in a real research process. Therefore, even if they are both based on the same
active learning paradigm, datasets wmarg5 and nomao differ somehow.

Thanks to this study, the Nomao dataset has now grown from 29,104 to 34,465
examples, and the classifier is much more efficient in predicting labels, even for “tricky
examples”. Indeed, looking at the first result line of table 11, we can see that C5 has an
error rate lower than 3% on the whole dataset.

test | init rand |marg|wmarg|wmarg5 baseline/nomao| tsun
train (29,104)[(1,985)[(917)| (964) | (995) | (163) | (167) |(170)] "
Sull 568 108 | 61 65 152 11 22 | 26 [2.94%
no random | 572 115 | 59 | 65 156 11 21 25 12.97%

no margin 547 108 | 84 85 163 11 24 27 13.04%
no wmargin | 570 110 | 69 79 167 12 26 | 25 |3.07%
no wmargin5| 525 105 | 73 74 269 12 27 28 (3.23%
no baseline | 570 109 | 55 | 65 155 13 24 | 27 |2.95%
no nomao 577 107 | 54 | 64 148 10 24 | 27 |2.93%
no tsun 564 105 | 57 | 61 149 11 22 | 26 |2.89%
Table 11. Final number of examples misclassified by C5, depending on the active datasets NOT
used.

It can also be noticed that its error is much more important on the wmarg5 dataset.
This is especially obvious when wmarg5 is not included in the training set but consid-
ered as a test set, since C5 then reaches an error rate of 269 / 995 = 27%. On the con-
trary, if this dataset is used, the error is significantly decreased from 3.23% to 2.94%.
In fact, the active selection of examples using the wmargin5 approach is here the best
to improve C5 results.

rand, marg and wmarg datasets also improve the results of C5. baseline has not a
significant influence. nomao seems the best to improve results on the init dataset, but its
interest is not globally significant. And using tsun even decreases the precision of C5.

If nomao does not help that much improving C5, it can be because wmarg5 already
did the job. And if tsun is not helpful for C3, it can be because the active data requested
by T. Sun was mainly adapted to the machine learning model he was using. In other
words, we are probably observing here that the relevance of the active learning pro-
cess is model-dependent.

Results reported in table 12 confirm that assumption since the active examples se-
lected by nomao are indeed the most effective to improve C5’s results. Then the baseline
active examples lead to better results than when #sun active examples are used.



C5 (init)|C5 (init+nomao)|C5 (init+baseline)|C5 (init+tsun)

240 148 155 185
Table 12. Number of test examples (among 1,985) misclassified by C5, depending on the active
datasets used.

To validate this assumption and deepen this research, we could now conduct this
study again with the challenge winner’s approach. We could thus at the same time im-
prove Nomao’s deduplication process and understand better how the context of use of a
machine learning method must be taken into account when designing an Active Learn-
ing method for a Real-world Application.

Besides, since the initial data is a large proportion of the training data in the ex-
periments, it would be interesting to see if the results would change for a much lower
proportion.

To share that problem with the community, the whole labeled dataset has been de-
livered publicly to the UCI Machine Learning Repository [26].
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